A ug 2 00 8 Minimal hypersurfaces in H n × R , total curvature and index

نویسنده

  • Ricardo Sa Earp
چکیده

In this paper, we consider minimal hypersurfaces in the product space Hn×R. We study the relation between the notions of finite total curvature and index of the stability operator. We study examples of rotation hypersurfaces and hypersurfaces invariant under hyperbolic translations; they serve as counterexamples and are useful barriers for many geometric problems.1

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Minimal hypersurfaces in H × R, total curvature and index

In this paper, we consider minimal hypersurfaces in the product space Hn × R. We begin by studying examples of rotation hypersurfaces and hypersurfaces invariant under hyperbolic translations. We then consider minimal hypersurfaces with finite total curvature. This assumption implies that the corresponding curvature goes to zero uniformly at infinity. We show that surfaces with finite total int...

متن کامل

Linear Weingarten hypersurfaces in a unit sphere

In this paper, by modifying Cheng-Yau$'$s technique to complete hypersurfaces in $S^{n+1}(1)$, we prove a rigidity theorem under the hypothesis of the mean curvature and the normalized scalar curvature being linearly related which improve the result of [H. Li, Hypersurfaces with constant scalar curvature in space forms, {em Math. Ann.} {305} (1996), 665--672].  

متن کامل

A ug 2 00 7 Stability properties for the higher dimensional

This paper concerns some stability properties of higher dimensional catenoids in Rn+1 with n ≥ 3. We prove that higher dimensional catenoids have index one. We use δ-stablity for minimal hypersurfaces and show that the catenoid is 2 n -stable and a complete 2 n -stable minimal hypersurface is a catenoid or a hyperplane provided the second fundamental form satisfies some decay conditions.

متن کامل

‎Spacelike hypersurfaces with constant $S$ or $K$ in de Sitter‎ ‎space or anti-de Sitter space

‎Let $M^n$ be an $n(ngeq 3)$-dimensional complete connected and‎ ‎oriented spacelike hypersurface in a de Sitter space or an anti-de‎ ‎Sitter space‎, ‎$S$ and $K$ be the squared norm of the second‎ ‎fundamental form and Gauss-Kronecker curvature of $M^n$‎. ‎If $S$ or‎ ‎$K$ is constant‎, ‎nonzero and $M^n$ has two distinct principal‎ ‎curvatures one of which is simple‎, ‎we obtain some‎ ‎charact...

متن کامل

The structure of stable constant mean curvature hypersufaces

We study the global behavior of (weakly) stable constant mean curvature hypersurfaces in general Riemannian manifolds. By using harmonic function theory, we prove some one-end theorems which are new even for constant mean curvature hypersurfaces in space forms. In particular, a complete oriented weakly stable minimal hypersurface in Rn+1, n ≥ 3, must have only one end. Any complete noncompact w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008